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Quantum statistics in a Robertson-Walker universe? 

R Beig 
Institut fur Theoretische Physik der Universitat Wien, Wien, Austria 

Received 22 November 1978, in final form 15 January 1979 

Abstract. The approach to equilibrium is discussed for a heat bath made of scalar, massless 
particles in a k = 0 Robertson-Walker background which drives a harmonic oscillator. 

1. Introduction 

It is known (Israel 1972) that matter in a gravitational field can in general only be in an 
equilibrium configuration if the underlying space-time manifold is stationary. An 
exception to this rule, recently discussed in this journal by Kennedy (1978), is afforded 
by massless particles for which only conformal stationarity is required. This enables one 
to set up the formalism of finite-temperature quantum field theory on Robertson- 
Walker (RW) universes (see Gibbons and Perry 1978, Kennedy 1978 and references 
therein). 

This paper concerns itself with an application of this machinery to a non-equilibrium 
situation where a harmonic oscillator interacts with this ‘heat bath’ made of zero rest 
mass particles in a RW background. It can be viewed as a generalisation of the well 
known work by Ford et a1 (1965) on chains of oscillators. The chosen coupling is such 
that the oscillator ‘does not follow the expansion (contraction) of the universe’ (like is 
the case for, say, an antenna trying to detect the cosmic microwave background). 
Physically one expects that as long as the universe does not expand (contract) rapidly on 
the scale of a typical collision time of the system, the classical results on approach to 
equilibrium in the various limits (Ford et a1 1965) remain valid, but with T ( t ) =  
(R(O)/R(t)) T(0)-the ‘Tolman temperature’-playing the role of temperature. At 
least in the classical limit this expectation is borne out by the computations. 

2. The free field 

The line element for a k = 0 RW universe in the usual coordinates is 

ds2 = d t 2  - R 2 ( t )  dr2.  (1) 

Introducing 7 = f ( t )  =S’dt’/R(t’) as the new time coordinate makes it manifest that (1) 
is conformally Minkowskian, in particular conformally stationary. We consider a 
massless conformally invariant scalar field on this RW metric: 

(O+iR)& = O .  (2) 

t Supported by a stipend from the Bundesministerium fur Wissenschaft und Forschung. 
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Taking advantage of conformal invariance the thermal two-point function for the 
quantum version of (2) can be written as 

where Fp is the corresponding two-point function in Minkowski space which satisfies 

OP@(X, T ;  x’, ~ ‘ ) = - ~ ~ ( ~ - T ’ ) s ~ ( x - x ’ )  (4) 

and is given by (see, e.g., Dolan and Jackiw 1974) 

ih ‘ h 2  1 
47r 47r (x-x’)2 

F p ( X ,  7 ;  X’, T ’ ) ’ - - S ( ( X  - x ’ ) 2 ) - y -  

where (x - x ’ ) ~  = ( T  - T’)’ - IX -x’I2. The first two terms on the RHS of (5) are vacuum 
contributions. In the context of the model treated presently they should, suitably 
regularised, give finite corrections to the physical constants appearing therein. Since, 
however, we are not interested in this effect for the present purposes, we simply discard 
these terms. To identify p in (3) and ( 5 ) ,  we look at the expectation value of the energy 
density (vacuum terms discarded) at some initial time r = O  and compare with the 
Stefan-Boltzmann law. This gives p = l/TR(0)(kB,I,,,nn = 1)  where T is the initial 
temperature. Using the same argument for arbitrary t shows that the energy density is 
equal to the one of black-body radiation at temperature T(r) = R(O)T/R(t) in accor- 
dance with standard red-shift arguments (Sciama 197 1) .  

3. Themodel 

The model we use was first studied by Aichelburg and Beig (1977). The equations are 

Q ( t ) + w i Q ( t )  = A 4 ( O ,  t )  ( Q  =dQ/dt). (7) 

The factor l /R3(t )  on the RHS of (7) makes sure that the ‘charge’ distribution is the 
point-limit of a finite one for which the invariant size is constant in time. This means 
that the oscillator ‘does not follow the expansion of the universe’. 

The equal-time commutation relations at time t for the quantum versions of (6) and 
(7) are 

\ ,  

(8) 
[@(x), @(x’)] = [&(x), &(x’)] = [a, Q] = [&, Q] = [a, Q3 = [b, 03 = 0. 

One shows that these relations are consistent with the dynamics, i.e. propagated by the 
equations of motion. Due to the linearity of (6) and (7) the classical and quantum 
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solutions to the Cauchy problem are formally identical. They are given for t > 0 by 

(9) Q(t)  =(G( t )+2TG( t ) )Q(O)+G( t )Q(O)+A I d t ' 7 Q H ( O ,  t ' )  

where 

' G(t - t ' )  
o R ( t )  

G(t )  = exp(-rr) sin(wt)/w, r = A2/8.rr =+Jw2-rz. 
- 2  w is the 'physical' spring constant which contains an (in our case infinite) renor- 
malisation due to the scalar self-energy of the oscillator. QH(x, t )  is the solution of (2) 
for initial data @(x, O), &(x, 0). The expression for @(x, t )  will not be needed here. 

We require the state of the system at t = 0 to be thermal with respect to the field 
variable in the sense of (3) and (5) and arbitrary for the oscillator. Oscillator and field 
should be uncorrelated initially, which means that expectation values containing 
products of Q and Q variables at t = O  are equal to the corresponding product of 
expectation values. We are interested in expressions like ( Q 2 ( t ) ) .  Confining our 
attention to times t >> r-', the exponential terms in (9) can be neglected. Using our 
assumptions about the nature of the initial state and the fact that (QH(x, O))@ = 0 we are 
left with 

f l '  ' G(t-  t ' )  G(t - t") OC p COS p [ f ( t ' )  -f(t")] 
( Q 2 ( t ) )  = A '7 dt' dt" ~ (10) 277 6 1  11 R(t ')  R(t") 6, dpexp(hp/TR(0))- l '  

I R(t )  =constant, (10) reduces to the expression found by Ford et a1 (1965). In the 
general case we obtain a simple answer in the classical limit h + 0, where 

If R( t )  increases monotonically and varies little over a time scale of order l/r, we can 
replace the RHS of (11) by 

which in turn is given for t >> l/r by 

W O )  TO) 
w * R ( t )  w 2  ' 

-- 

In a similar manner one obtains (Q2( t ) )+ T( t ) .  Therefore the oscillator energy 
id2 + $ W 2 Q 2  approaches T ( t ) .  Since a classical harmonic oscillator at temperature T 
has energy equal to T, this is exactly what is required by the zeroth law. Expectation 
values for higher powers of 0, d can be handled in an analogous fashion. 
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